Simplified Computation and Generalization of
the Refined Process Structure Tree

Artem Polyvyanyy', Jussi Vanhatalo?, and Hagen Volzer®

! Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
Artem.PolyvyanyyG@hpi.uni-potsdam.de
2 UBS AG, Postfach, CH-8098 Zurich, Switzerland
jussi.vanhatalo@ieee.org
3 IBM Research — Zurich, Sdumerstrasse 4, CH-8803 Riischlikon, Switzerland
hvo@zurich.ibm.com

Abstract. A business process is often modeled using some kind of a directed
flow graph, which we call a workflow graph. The Refined Process Structure Tree
(RPST) is a technique for workflow graph parsing, i.e., for discovering the struc-
ture of a workflow graph, which has various applications. In this paper, we pro-
vide two improvements to the RPST. First, we propose an alternative way to com-
pute the RPST that is simpler than the one developed originally. In particular, the
computation reduces to constructing the free of the triconnected components of
a workflow graph in the special case when every node has at most one incom-
ing or at most one outgoing edge. Such graphs occur frequently in applications.
Secondly, we extend the applicability of the RPST. Originally, the RPST was
applicable only to graphs with a single source and single sink such that the com-
pleted version of the graph is biconnected. We lift both restrictions. Therefore,
the RPST is then applicable to arbitrary directed graphs such that every node is
on a path from some source to some sink. This includes graphs with multiple
sources and/or sinks and disconnected graphs.

1 Introduction

Companies widely use business process modeling for documenting their operational
procedures. Business analysts develop process models by decomposing business sce-
narios into business activities and defining their logical and temporal dependencies.
The models are then utilized for communicating, analyzing, optimizing, and support-
ing execution of individual business cases within or across companies. Various mod-
eling notations have been proposed. Many of them, for example the Business Process
Modeling Notation (BPMN), Event-driven Process Chains (EPC), and UML activity
diagrams, are based on workflow graphs, which are directed graphs with nodes repre-
senting activities or control decisions, and edges specifying temporal dependencies.

A workflow graph can be parsed into a hierarchy of subgraphs with a single entry
and single exit. Such a subgraph is a logically independent subworkflow or subprocess
of the business process. The result of the parsing procedure is a parse tree, which is the
containment hierarchy of the subgraphs. The parse tree has various applications, e.g.,
translation between process languages [1-3], control-flow and data-flow analysis [4—
71, process comparison and merging [8], process abstraction [9], process comprehen-
sion [10], model layout [11], and pattern application in process modeling [12].



Vanhatalo, Vélzer, and Koehler [1] proposed a workflow graph parsing technique,
called the Refined Process Structure Tree (RPST), that has a number of desirable prop-
erties: The resulting parse tree is unique and modular, where modular means that a local
change in the workflow graph only results in a local change of the parse tree. Further-
more, it is finer grained than any known alternative approach and it can be computed in
linear time. The linear time computation is based on the idea by Tarjan and Valdes [13]
to compute a parse tree based on the triconnected components of a biconnected graph.

In this paper, we improve the RPST in two ways:

o The original RPST algorithm [1] contains, besides the computation of the tricon-
nected components, a post-processing step that is fairly complex. In this paper, we
show that the computation can be considerably simplified by introducing a pre-
processing step that splits every node of the workflow graph with more than one
incoming and more than one outgoing edge into two nodes. We prove that for the
resulting graph, the RPST and the triconnected components coincide. Furthermore,
we prove that the RPST of the original graph can then be obtained by a simple post-
processing step. This new approach reduces the implementation effort considerably,
requiring only little more than the computation of the triconnected components, of
which an implementation is publicly available [14].

o The original technique [1] is restricted to workflow graphs that have a single source
and a single sink such that adding an edge from the sink to the source makes the
graph biconnected. This assumption is too restrictive in practice as many business
process models have multiple sources and/or sinks, some are not biconnected, and
some are not even connected. In this paper, we show how these limitations can be
overcome. The resulting technique can be applied to any workflow graph such that
each node lies on a path from some source to some sink.

The remainder of the paper is structured as follows: The next section defines the
RPST and provides additional preliminary definitions. Sect. 3 proposes the simplified
algorithm for computing the RPST, and Sect. 4 then generalizes the algorithm to operate
on workflow graphs of arbitrary structure.

2 Preliminaries

This section presents the preliminary notions: the RPST [1] in Sect. 2.1, and the tri-
connected components of the graph [13, 15] in Sect. 2.2. We refer to the corresponding
original articles for additional motivation of the definitions presented in this section.

2.1 The Refined Process Structure Tree

A multi-graph G = (V, E, {) consists of two disjoint sets /" and E of nodes and edges,
respectively, and a mapping ¢ that assigns to each edge either an ordered pair of nodes,
in which case G is a directed multi-graph, or an unordered pair of nodes, in which case
G is an undirected multi-graph. A pair of nodes may be connected by more than one
edge (hence the name multi-graph). We assume that the mapping ¢ is fixed, so that a
subgraph can be identified with a pair (¥, E”), where V'’ C V and E’ C E such that each
edge in £’ connects only nodes in V. Let F' C E be a set of edges, Gg = (V, F) is the
subgraph formed by F if Vg is the smallest set of nodes such that (V, F) is a subgraph.



(b)
Fig. 1. (a) A workflow graph represented in BPMN, (b) the corresponding TTG (simplified)

A multi-terminal graph (MTG) is a directed multi-graph G that has at least one
source and at least one sink such that each node lies on a path from some source to
some sink; G is a two-terminal graph (TTG) if it has exactly one source and exactly
one sink. Fig.1(a) shows a workflow graph in BPMN notation and Fig.1(b) presents the
corresponding TTG. Note that the activity nodes (al, a2, etc.) are ignored in the TTG
for the sake of simplicity. We assume for simplicity of the presentation that a TTG has
at least two nodes and two edges.

Let G be an MTG and Gr = (Vp, F) be a connected subgraph of G that is formed
by a set F' of edges. A node in V is interior with respect to G if it is connected only
to nodes in Vg; otherwise it is a boundary node of Gr. A boundary node u of G is an
entry of G if no incoming edge of u belongs to F or if all outgoing edges of u belong to
F. A boundary node v of G is an exit of G if no outgoing edge of v belongs to F or if
all incoming edges of v belong to F'. F is a fragment of a TTG G if G has exactly two
boundary nodes, one entry and one exit. The set {«, v} containing the entry and the exit
node is also called the entry-exit pair of the fragment. A fragment is trivial if it only
contains a single edge. Note that every singleton edge forms a fragment. By definition,
the source of a TTG is an entry to every fragment it belongs to and the sink of a TTG is
an exit from every fragment it belongs to. Intuitively, control ‘enters’ the TTG through
the source and ‘exits’ the TTG through the sink. Note also that we represent a fragment
as a set of edges rather than as a subgraph.

We say that two fragments F, F’ are nested if F C F’ or F’ C F. They are disjoint
if F N F’” = 0. If they are neither nested nor disjoint, we say that they overlap. A
fragment of G is said to be canonical (or objective) if it does not overlap with any
other fragment of G. The Refined Process Structure Tree (RPST) of G is the set of all
canonical fragments of G. It follows that any two canonical fragments are either nested
or disjoint and, hence, they form a hierarchy. This hierarchy can be shown as a tree,
where the parent of a canonical fragment F is the smallest canonical fragment that
contains F. The root of the tree is the entire graph, the leaves are the trivial fragments.

Fig.2 exemplifies the RPST. Fig.2(a) shows a TTG and its canonical fragments,
where every fragment is formed by edges enclosed in or intersecting an area denoted
by the dotted border. For example, the canonical fragment 7'1 is formed by edges
{b,c,d, e, f}, has interior nodes {v, w} and boundary nodes {u, x}, with u being an en-
try and x an exit of the fragment. Fig.2(b) visualizes the RPST as a tree.

PI
PSRN
aiTI giBI'k

AN
b/c/Ji\e\/' iB2ij

1
hi
(b)
Fig. 2. (a) A TTG and its canonical fragments, (b) the RPST of (a)




2.2 The Triconnected Components

The fragments of a TTG are closely related to its triconnected components, which was
pointed out by Tarjan and Valdes [13]. This relationship is crucial for the results that are
obtained later in this paper. Here, we introduce the triconnected components in detail
and we start with some preliminary definitions.

The completed version of a TTG G, denoted C(G), is the undirected graph that
results from ignoring the direction of all the edges of G and adding an additional edge
between the source and the sink. The additional edge is called the return edge of C(G).
Let G be an undirected multi-graph. G is connected if each pair of nodes is connected
by a path; G is biconnected if G has no self-loops and if for each triple u, v, x of nodes,
there is a path from u to v that does not visit x. If a node x witnesses that G is not
biconnected, i.c., there exist nodes u, v such that x is on every path between u and v,
then x is called a separation point of G. G is triconnected if for each quadruple u, v, x, y
of nodes, there is a path from u to v that visits neither x nor y. A pair {x, y} witnessing
that G is not triconnected is called a separation pair of G, i.e., there exist nodes u, v
such that every path from u to v visits either x or y.

The TTG in Fig.1(b) is connected, but not biconnected; the nodes , x, y, and z are all
separation points. Fig.3(a) shows the completed version C(G) of the TTG from Fig.1(b),
where 7 is the return edge. The completed version is biconnected but not triconnected;
{u, x} and {x, z} are two of many separation pairs of C(G).

Fragments are strongly related to triconnectivity and separation pairs. Note that the
entry-exit-pair {u, x} of fragment 7'1 in Fig.2(a) is also a separation pair of its completed
version in Fig.3(a). In fact, each entry-exit pair of a non-trivial fragment of a TTG G is
a separation pair of C(G).

An (undirected) graph that is not connected can be uniquely partitioned into con-
nected components, i.e., maximal connected subgraphs. A connected graph that is not
biconnected can be uniquely decomposed into biconnected components, i.e., maximal
biconnected subgraphs. The biconnected components can be obtained by splitting the
graph into multiple subgraphs at each separation point. Because of the relationship of
fragments to triconnectivity, we are interested to decompose a graph into unique tricon-
nected components. That decomposition is explained in the remainder of this section.

Let G be a biconnected multi-graph and u, v be two nodes of G. A separation class
w.rt. u,v is a maximal set S of edges such that any two edges in S are connected by a
path that visits neither # nor v except as a start or end point. If there is a partition of all
edges of G into two sets E, £ such that both sets contain more than one edge and each
separation class w.r.t. #, v is contained in either of these sets, we call {u, v} a split pair.
We can then split the graph into two parts w.r.t. the parameters £y, E; and u, v: To this
end, we add a fresh edge e between u and v to the graph, which is called a virtual edge.

(b) (d)
Fig. 3. The completed version of the TTG from Fig.1(b) and its triconnected components: (a) The
completed version, (b) a polygon, (¢) a rigid component, and (d) a bond



(a) (b) (C) (d
Fig. 4. (a) A split of a hexagon from Fig.3(b), (b)-(c) a split of a tetragon, (d) a split of a bond

0
5

The graphs formed by the sets £y U {e} and E;| U {e} are the obtained split graphs of the
performed split operation. A virtual edge is visualized by a dashed line.

For an example of a split operation, consider the hexagon in Fig.3(b). Note that it
already contains virtual edges, which are the result of previous splits. The hexagon can
be split along the split pair u, z using the sets E| = {k,r,a}, E; = {m, g, [}. This results
in two tetragons, which are shown in Fig.4(a).

It may be possible to split the obtained split graphs further, i.e., into smaller split
graphs, possibly w.r.t. a different split pair. A split graph is called a split component if it
cannot be split further. Special split graphs are polygons and bonds. A polygon is a graph
that has & > 3 nodes and & edges such that all nodes and edges are contained in a cycle,
cf., Fig.3(b). A bond consists of 2 nodes and k£ > 2 edges between them, cf., Fig.3(d).
Each split component is either a triangle, i.e., a polygon with three nodes, a triple bond,
i.e., a bond with three edges, or a simple triconnected graph, where simple means that no
pair of nodes is connected by more than one edge [15]. If a split component is the latter,
we also call it a rigid component. Fig.3(c) shows an example of a rigid component,
whereas the split graphs shown in Fig.3(b) and Fig.3(d) are not split components as
they can be split further.

The set of split components that can be derived from a biconnected multi-graph is
not unique. To see that, we consider polygons and bonds. For instance, a tetragon, cf.,
Fig.4(a), can be split along a diagonal into two split graphs. Depending on the choice
of the diagonal, two different sets of split components are obtained. Fig.4(b) shows one
of the two possibilities for splitting the tetragon given on the left in Fig.4(a). Similarly,
a bond with more than three edges, cf., Fig.3(d), can be split into two bonds in several
ways, depending on the choice of £, and E;. One possibility to split the bond from
Fig.3(d) is shown in Fig.4(d). A set of split components for the graph in Fig.3(a) is
given by the graphs in Figs.3(c), 4(b), 4(c), and 4(d).

The inverse of a split operation is called a merge operation. Two split graphs formed
by edges Ey and E, respectively, that share a virtual edge e between a pair «, v of nodes
can be merged, which results in the graph formed by the set (Ey U E}) \ {e} of edges.
If we start with a set of split components of G and then iteratively merge a polygon
with a polygon and a bond with a bond until no more such merging is possible, we
obtain the unique triconnected components of G. Because a merge operation is the
inverse of a split operation, we can also obtain the triconnected components by suitable
split operations only: Let € be a split graph decomposition of G, i.e., a set of split
graphs recursively derived from G. A polygon P € ¥ is maximal w.rt. € if there is
no other polygon in % that shares a virtual edge with P. A bond B € ¥ is maximal
w.r.t. % if there is no other bond in % that shares a virtual edge with B. ¥ is a set of
the triconnected components of G if each member of 4 is either a maximal polygon, a
maximal bond, or a rigid split component. The set of the triconnected components of G
exists and is unique, cf., [15].



a:iTl
I

VN

bedef hij

(b)
Fig.5. (a) A TTG and its triconnected component subgraphs, (b) the tree of the triconnected
components of (a)

The graphs in Fig.4(c) can be merged along the virtual edge p. The obtained tetragon
can be merged with the triangles in Fig.4(b) along the virtual edges » and o to obtain
the maximal polygon from Fig.3(b). Figs.3(b), 3(c), and 3(d) show all the triconnected
components of the graph from Fig.3(a): Fig.3(d) is a maximal bond, which is obtained
by merging the bonds in Fig.4(d), and Fig.3(c) is a rigid component.

Any split graph decomposition can be arranged in a tree: The tree nodes are the split
graphs. Two split graphs are connected in a tree if they share a virtual edge. The root
of the tree is the split graph that contains the return edge. The tree of the triconnected
components of G is the tree derived in this way from its triconnected components.

Let C be a triconnected component of graph G. Let F be the set of all edges of G
that appear in C or some descendant of C in the tree of the triconnected components.
The graph formed by F is called the triconnected component subgraph derived from C.

Fig.5 shows the tree of the triconnected components. In Fig.5(a), the triconnected
component subgraphs of the workflow graph are visualized; they correspond to the
triconnected components from Fig.3. Each triconnected component subgraph is formed
by edges enclosed in or intersecting a region with the dotted border, e.g., all the graph
edges for Pl are derived from the component given in Fig.3(b). Fig.5(b) arranges the
triconnected components in a tree. The root of the tree, i.e., node P1, corresponds to the
triconnected component that contains the return edge . Note the difference between the
tree of the triconnected components in Fig.5 and the RPST in Fig.2.

3 Simplified Computation of the Refined Process Structure Tree

In this section, we show how the RPST computation can be simplified compared with
the original algorithm. In Sect. 3.1, we discuss the RPST of TTGs in which every node
has at most one incoming or at most one outgoing edge. Such TTGs are common in
practice. In Sect. 3.2, we address the general case of the RPST computation of any
TTG whose completed version is biconnected.

3.1 The RPST of Normalized TTGs

We call a TTG normalized if every node has at most one incoming or at most one
outgoing edge. In this section, we show that for normalized TTGs, the RPST compu-
tation reduces to computing the tree of the triconnected components. In other words,
each canonical fragment corresponds to a triconnected component subgraph and each
triconnected component subgraph corresponds to a canonical fragment.

Let C(G) be the completed version of a TTG. A pair {x,y} of nodes is called a
boundary pair if there are at least two separation classes w.r.t. {x, y}. A separation class
is proper if it does not contain the return edge. The boundary pair {, x} in Fig.3(a)
generates two separation classes. The first contains the edges b, ¢, d, e, f and is therefore



proper, whereas the second contains all other edges of the graph and is therefore not
proper. Fragments are strongly related to proper separation classes. To describe that
relationship, we introduce the notion of a separation component.

Definition 1 (Separation component). Let {x, y} be a boundary pair of C(G). A sepa-
ration component w.r.t. {x,y} is the union of one or more proper separation classes w.r.t.

{x,y}.

The bond from Fig.3(d) without the virtual edge m is a separation component w.r.t. {y, z}
of the completed version of the TTG from Fig.3(a). It is the union of the three proper
separation classes: {4}, {i}, and {j}.

We know that the entry-exit pair {x,y} of a fragment is a boundary pair of G and
that the fragment is a separation component w.rt. {x,y} [1]. Furthermore, it follows
from the construction of the triconnected components that each triconnected compo-
nent subgraph is a separation component. Polyvyanyy et al. [9] observed that every
triconnected component subgraph of a normalized TTG is a fragment. For normalized
TTGs, we can extend this observation to a full characterization of fragments in terms of
separation components.

Lemma 1. Let F be a set of edges of a normalized TTG. F is a separation component
if and only if F is a fragment.

Proof. For (=), let {u, v} be the boundary pair of F and let e be an edge in F. As the
return edge is not in F, it is in a different separation class w.r.t. {#, v} than e. Consider a
simple directed path from the source to the sink of the graph that contains e. It follows
that the path contains one of the nodes {u, v} before e and one after e; otherwise the
separation class of e would contain the return edge. Let, without loss of generality, u
be the former node and v the latter. It follows that # has an incoming edge outside F
and an outgoing edge inside F, and v has an incoming edge inside /" and an outgoing
edge outside F. Based on the assumption that the TTG is normalized, it is now straight-
forward to establish that # is an entry and v is an exit of F. Furthermore, there is no
other boundary node besides # and v because that would contradict the definition of a
separation class. Hence, F' is a fragment.

The direction (<) is Theorem 2 in [1]. O

It turns out that the set of triconnected component subgraphs of a normalized TTG is
exactly the set of all its canonical fragments and, thus, is the RPST of the TTG. Before
we prove the statement, we give two auxiliary lemmas which also by themselves deliver
interesting insights into separation components of a normalized TTG and their relations.

Lemma 2. [fF is a separation component and F’ a triconnected component subgraph,
then F and F' do not overlap.

Proof. If F contains only a single edge or the entire graph, the claim is trivial. Otherwise
F can be split off from the main graph into a split graph. We continue the decomposi-
tion until we reach a set of split components. Those can be arranged in a tree (of split
components) as described above. F' corresponds to a subgraph of this tree, i.e., a subtree
represents exactly the edges of F'. On the other hand, F” also corresponds to a subtree of
the tree of split components because the triconnected components are obtained by merg-
ing split components, i.e., by collapsing parts of the tree of split components. Since F’



and F” both correspond to subtrees of the same tree, they do not overlap. O

It follows from Lemma 2 that triconnected component subgraphs do not overlap. We
show now that for a separation component which is strictly contained in a triconnected
component subgraph, there always exists another separation component contained in
the same triconnected component subgraph that overlaps with it.

Lemma 3. [f F is a separation component that is not a triconnected component sub-
graph, then there exists a separation component F', such that F and F' overlap.

Proof. Consider a split graph decomposition that contains F. If F is not a triconnected
component subgraph, then F and the parent of /" are either bonds w.r.t. the same bound-
ary pair or polygons. In both cases, it is easy to display a bond or polygon, respectively,
that overlaps with F. O

We are now ready to prove the main proposition of this section.

Theorem 1. Let F be a set of edges of a normalized TTG. F is a canonical fragment if
and only if F is a triconnected component subgraph.

Proof.
= Let F be a canonical fragment. We want to show that F is a triconnected component
subgraph. Because of Lemma 1, F is a separation component. If F is not a tricon-
nected component subgraph, then there exists, because of Lemma 3, a separation
component F” that overlaps with F. Because of Lemma 1, F” is a fragment, which
contradicts F' being canonical.
< Let F be a triconnected component subgraph. We want to show that F is a canonical
fragment. Because of Lemma 1, F' is a fragment. Let F” be any fragment. Because
of Lemma 1, F” is a separation component. Because of Lemma 2, F and F” do not
overlap. Hence, F is a canonical fragment. O

For normalized TTGs, Theorem 1 implies that

the tree of the triconnected components and /Pl]\
the RPST coincide, i.e., both deliver the same airlig
decomposition on the set of edges of the TTG. //|\\

Fig.6(a) shows a normalized TTG and its tri- bedef
connected component subgraphs. The TTG is (b)

formed by a subset of edges of the workflow
graph from Fig.1(b). The triconnected com-
ponent subgraphs are also all the canonical
fragments of the TTG. Therefore, the RPST of the workflow graph from Fig.6(a), which
is given in Fig.6(b), can be computed by constructing the tree of the triconnected com-
ponents of the workflow graph.

Fig. 6. (a) A TTG and its triconnected com-
ponent subgraphs, (b) the RPST of (a)

3.2 The RPST of General TTGs

‘We now show how to compute the RPST of an arbitrary TTG whose completed version
is biconnected. To do so, we normalize the TTG by splitting nodes that have more
than one incoming and more than one outgoing edge into two nodes. We then compute
the RPST of the normalized TTG as in Sect. 3.1. Finally, we project the RPST of the
normalized TTG onto the original one and obtain the RPST of the original TTG.



]| oy deeis
b d b d z 3
(a) (b) (c)
Fig. 7. (a) Node-splitting, (b) a TTG, and (c) the normalized version of (b)

A single node-splitting is sketched in Fig.7(a). For instance, if the splitting is applied
to node u of the graph from Fig.7(b), it results in the new graph given in Fig.7(c) with
three fresh elements: nodes *u and ux*, and edge e. This is the only applicable splitting
in the example. Hence, the resulting graph is normalized and we call it the normalized
version of the TTG. The procedure can be formalized as follows.

Definition 2 (Node-splitting). Let G = (V; E, {) be a directed multi-graph and x € V'
anode of G. A splitting of x is applicable if x has more than one incoming and more
than one outgoing edge. The application results in a graph G’ = (V’, E’, ("), where
V' = (V\ {x}) U {xx,xx}, E/ = E U {e}, where =x and x= are fresh nodes and e is a
fresh edge, and ¢’ is such that {’(e) = (*x, x*). In addition, f € E,{(f) = (y,z) and
'(f) = (V/,Z') implies that )’ = x* if y = x, and otherwise )/ = y; and z’ = #x ifz = x,
and otherwise z’ = z.

Splitting is applicable if and only if the graph is not normalized. It is not difficult to see
that the order of different splittings does not influence the final result and, therefore, we
indeed get a normal form by applying all applicable splittings in any order.

After normalization, we proceed by computing the tree of the triconnected compo-
nents of the graph. As we know from Sect. 3.1, the tree coincides with the RPST of the
normalized graph. This tree can be projected onto the original graph by deleting all the
edges introduced during node-splittings. We will see later that this projection preserves
the fragments. However,the deletion of the edges may result in fragments which have a
single child fragment. This means that two different fragments of the normalized graph
project onto the same fragment of the original graph. We thus clean the tree by deleting
redundant occurrences of such fragments. Consequently, the only child fragment of a
redundant fragment becomes a child of the parent of the redundant fragment, or the
root of the tree if the redundant fragment has no parent. The result is the RPST of the
original graph. Alg. 1 details again the sequence of these steps.

Algorithm 1 Simplified computation of the RPST
RPST(Directed multi-graph G = (V, E, {))

1.G" = (V', E’, ) is the normalized version of G

2. T’ is the tree of the triconnected components of G’

3. T is T’ without trivial fragments in E'\E

4. R is T without redundant fragments

5. return R // the RPST of G

We exemplify Alg. 1 in Fig.8 and Fig.9 by computing the RPST of the TTG from
Fig.8(a). Fig.8(a) shows the triconnected component subgraphs P1 and B1 of the TTG,
whereas Fig.8(b) shows the corresponding tree of the triconnected components. The
TTG is not normalized: Nodes y and z are incident with multiple incoming and multiple



hij
(@) (b) (©)

Fig. 8. (a) A TTG and its triconnected component subgraphs, (b) the tree of the triconnected com-
ponents of (a), and (c) the normalized version of (a) and its triconnected component subgraphs

outgoing edges, and all the triconnected component subgraphs of the TTG are frag-
ments. Fig.8(c) shows the normalized version of the TTG from Fig.8(a); it is obtained
by splitting nodes y and z, in any order. The normalization introduces edges / and m to
the TTG. The tree of the triconnected components of the normalized version consists of
four triconnected components: P1, Bl, P2, and B2 shown in Fig.8(c). It follows from
Lemma 1 that they are all fragments.

Fig.9(a) shows the tree of the triconnected components of the normalized version
from Fig.8(c). Because of Theorem 1, the tree is the RPST of the normalized version. In
Fig.9(b), one can see the RPST without trivial fragments, which correspond to the edges
/ and m. Note that P2 now specifies the same set of edges of the TTG as B2. Therefore,
we omit P2, which is redundant, to obtain the tree given in Fig.9(c). This tree is the
RPST of the original TTG from Fig.8(a). Fig.9(d) visualizes the TTG again together
with its canonical fragments. Please note that Alg. 1, in comparison with the tricon-
nected decomposition shown in Fig.8(a) and Fig.8(b), additionally discovered canonical
fragment B2. P1, B1, and B2 are all the canonical fragments of the TTG.

To show that we indeed obtain the RPST of the original graph, we have to show
that (i) each canonical fragment of the normalized version projects onto a canonical
fragment of the original graph or onto the empty set, and (ii) for each canonical fragment
of the original graph, there is a canonical fragment of the normalized version that is
projected onto it. We establish these properties for a single node-splitting step. The
claim then follows by induction.

Consider a single node-splitting step transforming a graph G into G’, let x be the
node that is split into nodes #x and x*, and let e be the edge that is added between sx
and x*. We define the following mappings for the next lemma:

1. A mapping ¢ maps a set F' of edges of G’ to a set /(F) of edges of G by Y(F) =

F\{e}.

PI Pl
/1N 1
8iBI k 8Bl k
I\ AN
P2iJ P2:J
[N s
1ig2im ‘B2
T n
hi hi
(@) (b) (© (d)

Fig. 9. (a) The tree of the triconnected components of the TTG from Fig.8(c), (b) the tree from (a)
without the fresh edges / and m, (c) the RPST of the TTG from Fig.8(a), and (d) the TTG from
Fig.8(a) and its canonical fragments



2. A mapping ¢ maps a set of edges H of G to a set ¢(H) of edges of G’ by ¢(H) =
H U {e} if H has an incoming edge to x as well as an outgoing edge from x, and
otherwise ¢(H) = H.

Now, we claim:

Lemma 4. Let ¢, and e be defined as above. We have.
1. If F # {e} is a fragment of G', then Yy(F) is a fragment of G.
2. If H is a fragment of G, then ¢(H) is a fragment of G'.
3. If F # {e} is a canonical fragment of G', then y(F) is a canonical fragment of G.
4. If H is a canonical fragment of G, then there exists a canonical fragment F of G’
such that y(F) = H.
The proof of Lemma 4 is in [16]. Lemma 4 and the fact that each step in Alg. 1 can be
computed in linear time allow us to conclude:

Theorem 2. Alg. 1 computes the RPST of a TTG whose completed version is bicon-
nected in linear time.

4 Generalization of the Refined Process Structure Tree

So far, the RPST decomposition is restricted to TTGs whose completed version is bicon-
nected. In practice this is not sufficient, as a process model may have multiple sources
and sinks, cf., Fig.10(b), may be disconnected or may violate biconnectedness assump-
tion. For the latter, consider Fig.10(a). Node u is a separation point of the completed
version of the graph as its deletion separates the node labeled with a1l from the rest of
the graph. Hence, the completed version is not biconnected. Note that process modeling
languages such as BPMN and EPC do not impose such structural limitations. In fact, a
test of the SAP reference model [17], a collection of industrial process models given as
EPCs, showed that more than 80 percent of the models violate one of the restrictions.
1

(b)
Fig. 10. A workflow graph (a) whose completed version is not biconnected, (b) has multiple sinks

In this section, we propose a way to decompose any MTG. The results of this section
are also described in detail in a thesis [18]. We start by decomposing arbitrary TTGs.

4.1 The RPST of TTGs

Fig.11(a) shows the TTG that corresponds to the process model in Fig.10(a). As we
explained above, its completed version is not biconnected because node u is a separation
point. Note that » has multiple incoming as well as multiple outgoing edges. Every
separation point has this property:

Lemma 5. Let G be a TTG. Every separation point of C(G) has more than one incom-
ing and more than one outgoing edge in G.



Fig.11. (a) A TTG whose completed version is not biconnected, (b) the RPST of (a), (c) the
normalization of (a), and (d) the RPST of (¢)

Proof. A source s and a sink 7 of G are in the same biconnected component of C(G) as
they are connected in G and, therefore, biconnected in C(G) after introducing the return
edge. Moreover, it is easy to see that C(G) is connected without s or 7 and, hence, s and
t are not separation points of C(G). Let x, without loss of generality, be some separation
point of C(G) that results in a set B of biconnected components. Let b € B, without loss
of generality, be a biconnected component induced by x that does not contain s and ¢.
Assume y is a node which belongs to b. As every node of G is on a path from s to ¢,
then x is on every path from s to y and from y to 7. A path from s to y implies that x has
an incoming edge that does not belong to b and an outgoing edge that belongs to b. A
path from y to ¢ implies that x has an incoming edge that belongs to » and an outgoing
edge that does not belong to b. Hence, the claim holds.

If b consists of a single edge, it is an incoming and an outgoing edge of x. Every
path from s to ¢ through x also contains two edges incident with x, an incoming and an
outgoing, which do not belong to 4. Hence, the claim holds. O

It follows that the completed version of the normalization of G is biconnected. There-
fore, we can apply Alg. 1 from Sect. 3.2 to decompose an arbitrary TTG. We call the
resulting decomposition of G the RPST of G. This is a generalization of the previous
definition because if C(G) is already biconnected, we get the RPST as defined previ-
ously. Note that we obtain the same result by splitting only the separation points of G,
computing the RPST of the resulting graph G’ (in any way), and then projecting the
RPST of G’ onto G. As the normalized version and its RPST are unique, it then follows
from the construction that the RPST of an arbitrary TTG is unique.

Fig.11 shows the RPST of the example, as well as the way in which it is obtained.
Again, the RPST of the original graph is obtained by deleting the edge 4, which was
generated in the node-splitting, and afterwards removing the redundant fragment B2.

Figs. 12(a), 12(b), and 12(c) show more examples of decompositions of TTGs
whose completed versions are not biconnected. Every subgraph obtained has either ex-

(d
Fig. 12. (a)~(c) The RPST of a TTG, and (d) Valdes’s parse tree of the TTG from (c)



actly two boundary nodes, one entry and one exit, or exactly one boundary node, which
is bidirectional. Let G be a TTG and F be a connected subgraph of G. A boundary node
u of F is bidirectional if there exist an incoming and an outgoing edge of u inside F,
and there exist an incoming and an outgoing edge of « outside F. Note that control flow
can both enter and exit F' through u.

Valdes [19] has proposed an alternative way to decompose an arbitrary TTG G. He
proposed to first compute the biconnected components of C(G) and then further decom-
pose each biconnected component into its triconnected components. If we adapt this
idea and compute the RPST of each biconnected component of C(G), we obtain a root
component that contains all biconnected components as children, which in turn have
their RPSTs as subtrees. The result for the graph from Fig.12(c) is shown in Fig.12(d),
which is different from the decomposition we propose. Note that the result has a com-
ponent that has more than two boundary nodes, e.g., B, and another one having two
boundary nodes that are both bidirectional, e.g., C. Unlike our decomposition, the de-
composition in Fig.12(d) does not reflect the fact that the component containing node
w depends on the component that is entered through node u.

4.2 The RPST of MTGs

To decompose an arbitrary MTG, we ‘normalize’ an MTG into a TTG by constructing
a unique source and a unique sink as follows.

Definition 3. Let G be an MTG. We construct a graph G’ from G as follows.
1. If G has more than one source, a new source s is added and for each source node u
of G, an edge from s to u is added.
2. If G has more than one sink, a new sink ¢ is added and for each sink node v of G,
an edge from v to ¢ is added.
G’ is a TTG, which we call the TTG version of G. The normalized version G* of G is
the normalized version of G’.

By normalizing an MTG, we again obtain a TTG whose completed version is bicon-
nected. The normalized version can be decomposed with the RPST, and the decomposi-
tion can be projected onto the original MTG through Alg. 1. The result that is obtained
from applying Alg. 1 to the normalized version of an MTG G is called the RPST of G.
The RPST of an MTG is unique.

Fig.13 shows (a) an MTG G, (b) the RPST of G, (c) the TTG version G’ of G, and
(d) the RPST of G’. The RPST of G is derived from the RPST of G’ with Alg. 1.

Note that for an MTG, the subgraphs formed by the decomposition may have more
than two boundary nodes. For example, subgraph Bl in Fig.13(a) has two sources u
Pl

{BI {B2:

4 T v
P2 iP5 P4 RS
nn /3N
ga hb C{B_g; fk

P6; L PT:

nn

di ej

(a) (b) (c) (d)

Fig. 13. (a) An MTG G, (b) the RPST of G, (c) the TTG version G’ of G, and (d) the RPST of G’



/I /N
faipiidej

el N
iP3; P4

N

bg ch

() (b) () (d)

Fig. 14. (a) A disconnected MTG G, (b) the RPST of G, (¢) the TTG version G* of G, and (d) the
RPST of G*
and v as entries, and an exit w. Subgraph B2 has an entry w, and three sinks as exits.

Subgraph P1 two sources as entries, and three sinks as exits.

An RPST-formed subgraph is not necessarily a connected subgraph of an MTG. If
an MTG is disconnected, the root fragment of its RPST is a union of the connected
components of the MTG. For example, Fig.14 shows an example of (a) a disconnected
MTG G, (b) the RPST of G, (c) the TTG (and normalized) version G* of G, and (d)
the RPST of G*. Note that every connected component of the MTG always becomes a
separate component of the RPST decomposition.

Fig.15 shows the RPST-formed fragments of the workflow graphs introduced in
Fig.10. We can use these fragments to translate BPMN diagrams into BPEL processes.
We have labeled the fragments according to the BPEL blocks they correspond to. For
example, sequence B in Fig.15(a) is a sequence of a while loop and the activity a2. These
decompositions are not directly obtainable with any prior decomposition technique.

-until
sequence B

(a) (®)
Fig. 15. The RPST-formed fragments of the workflow graphs introduced in Fig.10

5 Conclusion

We simplified the theory for workflow graph parsing into single-entry-single-exit frag-
ments through use of normalized TTGs. This leads to a simplification of the RPST
parsing algorithm and its implementation. The implementation effort is essentially re-
duced to the computation of the triconnected components, of which an implementation
is publicly available [14]. In fact, in many applications, nodes have either a single in-
coming or a single outgoing edge, in which case no pre- and postprocessing steps are
required. Together with our previous results [1, 18], we have a parsing technique that
produces a unique and modular decomposition in linear time in a simple way. The result
has a simple characterization in terms of canonical fragments.

In the second part of the paper, we have shown how the RPST technique gives rise to
a decomposition of any workflow graph that may occur in practice. The only remaining



assumption is that each node must be on a path from some source to some sink.

We have implemented the simplified RPST computation, as proposed in this pa-

per, and tested its functionally against the implementation of the original RPST tech-
nique [1] on the SAP reference model [17], which consists of 604 EPC models. The
models were transformed to TTGs that range in size from 2 to 195 edges, with the aver-
age of 28.7 edges in one TTG. As it was discovered during evaluation, the models have
on average 16.5 non-trivial fragments, ranging from the minimum of 1 fragment to the
maximum of 132 fragments in one model.

References

1.

2.

10.

11.

12.

13.

16.

17.

18.

19.

Vanhatalo, J., Volzer, H., Koehler, J.: The refined process structure tree. Data & Knowledge
Engineering 68(9) (2009) 793-818

Garcia-Banuelos, L.: Pattern identification and classification in the translation from BPMN
to BPEL. In: OTM Conferences (1). Volume 5331 of LNCS. (2008) 436444

. Polyvyanyy, A., Garcia-Bafiuelos, L., Weske, M.: Unveiling hidden unstructured regions in

process models. In: OTM Conferences (1). Volume 5870 of LNCS. (2009) 340-356

. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Volzer, H., Wolf, K.: In-

stantaneous soundness checking of industrial business process models. In: BPM. Volume
5701 of LNCS. (2009) 278-293

. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions

in linear time. In: PLDI. (1994) 171-185

. Johnson, R.: Efficient Program Analysis using Dependence Flow Graphs. PhD thesis, Cor-

nell University, Ithaca, NY, USA (1995)

. Vanhatalo, J., Volzer, H., Leymann, F.: Faster and more focused control-flow analysis for

business process models though SESE decomposition. In: ICSOC 2007. Volume 4749 of
LNCS. (2007) 43-55

. Kiister, J., Gerth, C., Forster, A., Engels, G.: Detecting and resolving process model differ-

ences in the absence of a change log. In: BPM. Volume 5240 of LNCS. (2008) 244260

. Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process models.

In: BPM. Volume 5701 of LNCS. (2009) 229-244

Vanhatalo, J., Volzer, H., Leymann, F., Moser, S.: Automatic workflow graph refactoring
and completion. In: ICSOC. Volume 5364 of LNCS. (2008) 100-115

Battista, G.D., Tamassia, R.: On-line maintenance of triconnected components with SPQR-
trees. Algorithmica 15(4) (1996) 302-318

Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling.
In: BPM. Volume 5240 of LNCS. (2008) 4-19

Tarjan, R.E., Valdes, J.: Prime subprogram parsing of a program. In: POPL 1980, ACM
(1980) 95-105

. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Graph Drawing.

Volume 1984 of LNCS. (2000) 77-90

. Hopcroft, J., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput.

2(3) (1973) 135-158

Polyvyanyy, A., Vanhatalo, J., V6lzer, H.: Simplified computation and generalization of the
refined process structure tree. Technical Report RZ 3745, IBM (2009)

Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1997)
Vanhatalo, J.: Process structure trees: Decomposing a business process model into a hierar-
chy of single-entry-single-exit fragments. PhD thesis, University of Stuttgart, Germany (July
2009) Volume 1573, dissertation.de — Verlag im Internet. ISBN: 978-3-86624-473-3.
Valdes, J.: Parsing Flowcharts and Series-Parallel Graphs. PhD thesis, Stanford University,
CA, USA (1978)



